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Abstract In this paper we analyze a new location problem which is a generalization
of the well-known single facility location model. This extension consists of intro-
ducing a general objective function and replacing fixed locations by trajectories.
We prove that the problem is well-stated and solvable. A Weiszfeld type algorithm
is proposed to solve this generalized dynamic single facility location problem on
Lp spaces of functions, with p ∈ (1, 2]. We prove global convergence of our algo-
rithm once we have assumed that the set of demand functions and the initial step
function belong to a subspace of Lp called Sobolev space. Finally, examples are
included illustrating the application of the model to generalized regression analy-
sis and the convergence of the proposed algorithm. The examples also show that
the pointwise extension of the algorithm does not have to converge to an optimal
solution of the considered problem while the proposed algorithm does.

Keywords Location · Weber Problem · Hyperbolic approximation

1 Introduction

In a location problem we are given the position of a number of demand facilities and
the goal is to locate one or several service facilities to cover the demand in an optimal
way. The objective function to be optimized depends of the nature of the problem
although the most common notions are the minimization of the weighted sum or
the maximum distances. The standard single facility location problem assumes that
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the position of the demand facilities is fixed “a priori” (Drezner 1995; Drezner and
Hamacher 2002; Francis et al. 1992). Nevertheless, depending on what demand
position means in each problem, it is clear that in some situations the positions
may vary throughout the planning horizon. These models adapt better than the
classical (static) ones to situations with seasonal demand, i.e., models where the
demand changes depending on the season of the year. Scanning the literature of
location analysis we can find several references dealing with problems where the
initial definition of a location problem (position of the demand facilities or demand
intensity) changes along the time.

Abdel-Malek (1985) considered the problem of optimal positioning of a ser-
vice among moving existing ones, minimizing the weighted sum of distances in an
interval. Drezner and Wesolowsky (1991), introduced a modification of the Weber
problem allowing the location of the demand points to change a finite number
of times. Compared with original approaches, the main improvement of that for-
mulation is that it provides a better fit to real applications where data are time
dependent, as for instance seasonal demand. Following these approaches, Puerto
and Rodrı́guez-Chı́a (1999), deal with an extension of the previous model called
the Dynamic Weber Problem.

In this paper, we present a general version of the Dynamic Single Facility Loca-
tion problem where the objective function is an increasing, continuously differen-
tiable function rather than the sum function; and that includes as particular instances
classical, (Brimberg and Love 1993; Chandrasekaran and Tamir 1990; Frenk et al.
1994; Morris and Verdini 1979; Wesolowsky 1993) as well as dynamic models,
(Abdel-Malek 1985; Drezner and Wesolowsky 1991; Puerto and Rodrı́guez-Chı́a
1999) previously studied in the literature. The goals in this paper are the following:
(1) to propose a general formulation for single facility location problems with mov-
ing service facilities; (2) to develop an algorithm to solve this kind of problems;
and (3) to prove global convergence for any sequence generated by this algorithm
and for all p ∈ (1, 2].

Although there exist algorithms in the literature that solve the static version of
the problem, as we will show in the paper, the optimal solutions of the dynamic
version of the problem do not have to coincide with the solution obtained when solv-
ing the problem optimally for each time epoch in a specific time interval, which
we call the pointwise solution [see Brimberg and Love (1993), Brimberg et al.
(1998), Cánovas et al. (2002), Frenk et al. (1994), Üster and Love (2000), Vardi
and Zhang (2001) for details of Weiszfeld’s algorithm in R

m]. This counterintuitive
performance reinforces the necessity of our analysis which may be mathematically
explained by the different expressions of the iterates of each algorithm (compare
(14) and (15) in section 4) and it is due to the different topological structure induced
by the norm in the considered spaces.

Apart from the theoretical interest and the fact that this model fits better to
problem with seasonal demand, there exists a clear application of this model in
generalized regression analysis. Since the reader may not be familiar with this
field we describe it in some detail. The standard problem in this field looks for
the parameters defining a particular functional form which best fit a given set
of data. It is well-known that in the least square model (l2

2 -regression): given
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A = {(t1, a1), . . . , (tn, an)} the data set and f (t) = λt + µ the functional form;
the problem consists of finding the minimum of

min
λ,µ

n∑

i=1

(|ai − f (ti)|)2.

It is clear that this problem looks for the line minimizing the sum of the quadratic
errors of the estimated data (error function). Everybody knows that the solution
of this problem can be obtained using the normal equations. Apart from this very
simple model there are many other generalizations of the least square regression
model; some considering different measures: absolute deviation regression (l1-
regression), maximum deviation regression (l∞-regression), ... and also, allowing
different functional forms for f (Rousseeuw and Yohai 1984; Rousseeuw 1987).

Assume now that we observe a finite number of continuous time experiments
in equal length periods of time. For instance, the trajectory of a solid sinking
in a fluid or a continuous time demand function. Then, we are given a set A =
{a1(t), . . . , an(t)} of trajectories for t ∈ [0, T ]. The regression problem for a
generic error function g is:

min
x∈{space of trajectories}

g(‖x(t) − a1(t)‖, . . . , ‖x(t) − an(t)‖) (1)

being ‖ · ‖ a norm in the space of functions where x belongs to. Essentially, this
is a generalized regression model with continuous type data set and no hypothesis
on the form of the final regressor. This is exactly the problem that we will solve in
this paper.

This problem appears in forecasting the intensity of electricity necessary to
cover customers demand. The daily instantaneous demand of electricity is clearly
a time dependent process for which electricity companies have repeated records
(sample paths). Each one of these records is a function which gives the intensity of
electricity required in each instant of time. Deviation from the actual demand has an
economic cost: excesses are lost and shortages lead to uncovered demand or extra
production cost. Thus, it is clear the need of accurate estimates of the instantaneous
demand. This means, looking for an estimation of the demand which minimizes the
overall deviations with respect to the recorded demands throughout the planning
horizon. Since in this model the data are functions of time and no a priori shapes for
the demand can be foreseen, we must apply the generalized regression described
previously.

In addition, the model in (2) and the proposed algorithm can be used to solve
location problems and to perform non-parametric estimation of the mean, median
or more complex functions of stochastic processes or time series. Indeed, as well
as the classical Weber problem allows us to compute sample 1-principal points of
random variables (Flury 1990), this new approach permits to compute 1-princi-
pal functions of stochastic processes. Finally, it should be noted that the dynamic
approach adapts better than the static one in modeling certain location situations.
For instance, the location of a trajectory of a moving service facility with respect
to a set of fixed routes or corridors.

The paper is organized as follows. Section 2 introduces the model and proves
some preliminary results. Section 3 studies conditions to ensure existence and
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uniqueness of optimal solutions. Section 4 develops the proposed algorithm. In
section 5 convergence properties are studied showing that the algorithm converges
to an optimal solution of the considered problem. This section also includes an
application to generalized regression analysis and an illustrative example show-
ing the different behavior of the pointwise and the proposed solution approaches.
Finally, section 6 contains the conclusions of the paper.

2 Model formulation and previous results

Let us consider the normed space Xp = Lp(I, R
m) equipped with the norm

||x||p =
(∫

I

m∑

k=1

|xk(t)|p dt

) 1
p

where I is a bounded interval. Given a finite set

A ⊂ Xp, whose elements are called demand functions, and an increasing continu-
ously differentiable function g : S −→ R with R

|A|
+ ⊂ S we consider the following

optimization problem

inf
x∈Xp

f0(x) := g(d(x)) (2)

where d(x) =
(
||x − a||p

)

a∈A
.

Notice that this formulation includes the classical and well-known Weber prob-
lem on finite dimensional spaces, (Brimberg and Love 1993; Frenk et al. 1994),
and the dynamic Weber problem, (Puerto and Rodrı́guez-Chı́a 1999), if we take
the function g as the sum of the components of the distance vector d(x).

The nondifferentiability of the objective function f0 at the demand functions
leads us to consider an alternative optimization problem similar to the one suggested
by Eyster et al. (1973). It consists of replacing each vector v = (v1, . . . , vm) ∈ Xp

by ξε(v)(t) =
(
ξε,1(v)(t), . . . , ξε,m(v)(t)

)
being ξε,k(v)(t) = (vk(t)

2 + ε2χI (t))
1
2

with k = 1, . . . , m, ε > 0 and χI : R −→ R the function defined as

χ
I
(t) =

{
1 if t ∈ I ,

0 otherwise.
(3)

This is the so-called hyperbolic approximation and it is known that Problem (2) is
uniformly approximated by

inf
x∈Xp

fε(x) := g(dε(x)) (4)

where dε(x) =
(
||ξε(x − a)||p

)

a∈A
.

We will use Problem (4) to get an optimal solution of Problem (2) by means
of an iterative scheme. Since the objective function fε is differentiable an optimal
solution x∗

ε for (4) can be obtained using the necessary condition ∇fε(x
∗
ε ) = 0.

Once the problem has been formulated, our first step is to obtain sufficient
conditions which ensure that the Problems (2) and (4) are well-stated and their set
of optimal solutions are included in the considered space.

The first result in this section is a localization theorem which gives an upper
bound of the norm of the optimal solutions of (2) and (4).
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Lemma 2.1 If x∗ is an optimal solution of Problem (2) or (4) then

||x∗||p ≤ 2 max
a∈A

||a||p + 1.

Proof Since we are interested in ε small enough, we can consider, without loss

of generality, Problem (4) with ε < min

{
1,

1

m(I)
1
p

}
, being m(I) the Lebesgue

measure of I . Since g is an increasing function of its arguments, if x∗ is an optimal
solution there exists no y ∈ Xp such that ||ξε(y−a)||p < ||ξε(x

∗−a)||p ∀a ∈ A.
Then, ∀y ∈ Xp ∃a ∈ A, such that ||ξε(x

∗−a)||p ≤ ||ξε(y−a)||p. Thus, applying
for y = 0

||ξε(x
∗ − a)||p ≤ ||ξε(a)||p, for some a ∈ A.

Hence,

||x∗||p − ||a||p ≤ ||ξε(x
∗ − a)||p ≤ ||a||p + εm(I)

1
p , ∀ε < min

{
1,

1

m(I)
1
p

}
.

So that,

||x∗||p ≤ 2 max
a∈A

||a||p + 1.

Hence, any optimal solution of Problem (4) is included in the set

Cp = {y ∈ Xp : ||y||p ≤ 2 max
a∈A

||a||p + 1}. (5)

Notice that the same proof holds for Problem (2) if we take ε = 0. ��
Lemma 2.1 allows us to prove a theorem which establishes the existence of

optimal solutions for Problems (2) and (4).

Theorem 2.1 Problems (2) and (4) have optimal solutions in Lp(I, R
m) for any

p ∈ (1, +∞) and we can therefore replace “inf” by “min” in the statements of
these problems.

Proof The functions f and fε are continuous convex functions defined on Xp

whose set of optimal solutions are included in the set Cp (introduced in (5)). Since
Cp is a bounded, closed, convex set, Proposition 38.12 in Zeidler (1985) ensures
that both problems have optimal solutions. ��

Since fε is differentiable, any optimal solution of (4) has to belong to the set

�fε
= {x ∈ Xp : ∇fε(x) = 0}. (6)

In what follows, we look for a sufficient condition of uniqueness of Problem (4).
In order to develop such a condition we will prove a previous lemma.

Lemma 2.2 The function ||ξε(y − a)||p is strictly convex for all a ∈ A and for
any p ∈ (1, +∞).
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Proof Indeed, ‖ · ‖p is a strictly convex function for any p ∈ (1, +∞). Besides,
ξε(· − a) is a vector whose components are convex functions. Therefore, the com-
posed function ‖ξε(· − a)‖p is convex. In order to prove the strict convexity, it
suffices to prove that the components of ξε(· − a) are strictly convex functions.
Indeed, for each t ∈ I and any y ∈ Xp

ξε(y − a)(t) =
(∥∥∥
(
y1(t) − a1(t), εχI (t)

)∥∥∥
2
, . . . ,

∥∥∥
(
(ym(t) − am(t), εχI (t)

)∥∥∥
2

)
.

where ‖ · ‖2 is the l2-norm in R
2.

We will proceed by contradiction. Assume ξε(·− a) is not strictly convex, then
there exist x, y ∈ Xp and B ⊆ I (m(B) > 0) being x(t) �= y(t), for all t ∈ B,
such that the following equation holds almost everywhere (a.e.), for all k,

∥∥∥
(
θxk(t) + (1 − θ)yk(t) − ak(t), εχI (t)

)∥∥∥
2

= θ

∥∥∥
(
xk(t) − ak(t), εχI (t)

)∥∥∥
2
+ (1 − θ)

∥∥∥
(
yk(t) − ak(t), εχI (t)

)∥∥∥
2

The condition above implies that Minkowski’s inequality is an equation, then it
must exist λ ∈ R satisfying (Spivak 1970):
(
θ(xk(t) − ak(t)), θε

)
= λ

(
(1 − θ)(yk(t) − ak(t)), (1 − θ)ε

)
, ∀t ∈ I.

(7)

Therefore, we obtain from the equality of the second entries in both sides of
(7), we have that

λ = θ

1 − θ
,

and from the equality of the first entries in (7) that

xk(t) − ak(t) = yk(t) − ak(t) (a.e.) and for any 1 ≤ k ≤ m,

what implies that

x(t) = y(t), (a.e.).

This is a contradiction. Thus, we get the thesis of this lemma. ��
The uniqueness result is given by the following theorem.

Theorem 2.2 If the function g : S −→ R is quasiconvex on R
m
+ and increas-

ing continuously differentiable then �fε
, defined in (6), only contains the unique

optimal solution of Problem (4).

Proof Since we have proved in Lemma 2.2 that
dε,a(x) := ||ξε(x − a)||p is strictly convex then

dε,a(x + h) − dε,a(x) > 〈∇dε,a(x), h〉, ∀a ∈ A ∀h ∈ Xp; (8)

where 〈. , .〉 is defined in the Appendix (see (16)).
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Let us consider x̄ ∈ �fε
, then the directional derivative of fε at x̄ in the direction

h, f ′
ε(x̄, h), verifies

0 = f ′
ε(x̄, h) =

∑

a∈A

∂g

∂za

(dε(x̄))〈∇dε,a(x̄), h〉, ∀h ∈ Xp.

Using the inequality (8) and the fact that g is increasing,

0 <
∑

a∈A

∂g

∂za

(dε(x̄))
(
dε,a(x̄ + h) − dε,a(x̄)

)
, ∀h ∈ Xp.

This implies by the quasiconvexity of g and Theorem 3.5.4 of Bazaraa and Shetty
(1979) that

fε(x̄ + h) > fε(x̄) ∀h ∈ Xp

and so x̄ is the unique optimal solution of Problem (4). ��
Notice that the same result could have been obtained under less restrictive

hypothesis, for instance, it would have been enough that g were non decreasing
with at least one increasing component.

3 The Weiszfeld dynamic hyperbolic algorithm

The goal of this section is to develop an algorithm to solve Problem (4). This algo-
rithm consists of adapting the hyperbolic approximation of the Weiszfeld algorithm
to this dynamic problem. Based on the necessary condition ∇fε(x

∗
ε ) = 0 for x∗

ε to
be an optimal solution of (4) one can construct an iterative scheme similar to the
Weiszfeld algorithm. We want to point out that in this case the necessary condition
is also sufficient by Theorem 2.2 and can be written as:

∂fε

∂xk

(x; h) = 0 k = 1, . . . , m ∀h ∈ Xp p > 1

where
∂fε

∂x
(x; h) stands for the Gateaux differential at x in the direction of h.

Equivalently, this derivative can be written for a particular k, 1 ≤ k ≤ m, as

∑

a∈A

∂g

∂za

(dε(x))||ξε(x − a)||1−p
p

(∫

I

ξε,k(x−a)(t)p−2(xk(t)−ak(t))hk(t) dt

)
= 0

for all p > 1 and for all h ∈ Xp.
Using the completeness of Xp, the following expression holds,

∑

a∈A

∂g

∂za

(dε(x))||ξε(x − a)||1−p
p ξε,k(x − a)(t)p−2(xk(t) − ak(t)) = 0

∀p > 1 ∀k = 1, . . . , m.
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Hence, we obtain an iterative process by means of the fixed point equation, Tε(x) =
x; where Tε(x) =

(
Tε,1(x), . . . , Tε,m(x)

)
is given by

Tε,k(x)(t) =
∑

a∈A

∂g

∂za
(dε(x))||ξε(x − a)||1−p

p ξε,k(x − a)(t)p−2

∑
b∈A

∂g

∂zb
(dε(x))||ξε(x − b)||1−p

p ξε,k(x − b)(t)p−2
ak(t)

∀k = 1, . . . , m. (9)

The equation forTε is well-defined because, ξε,k(x−a)(t) > 0, ∀a ∈ A, ∀k =
1, . . . , m and for any t ∈ I . Besides, ||ξε(x − a)||1−p

p > 0 and
∂g

∂za

(dε(x)) > 0

for any a ∈ A because g is an increasing function. Therefore, if we consider the
fixed-point map Tε(x) = x with x ∈ Xp, we get the following iterative scheme:

x
q+1
k (t) =

∑

a∈A

∂g

∂za
(dε(x

q))||ξε(x
q − a)||1−p

p ξε,k(x
q − a)(t)p−2

∑
b∈A

∂g

∂zb
(dε(xq))||ξε(xq − b)||1−p

p ξε,k(xq − b)(t)p−2
ak(t)

∀k = 1, 2, . . . , m. (10)

This scheme will be referred later as dynamic hyperbolic Weiszfeld algorithm.
This iterative method has two important properties. The first, which establishes that
the scheme gives descent, is an adaptation of Theorem 3.2 in Frenk et al. (1994)
and its proof is included for the sake of completeness. In this proof we will use the
following lemma whose proof is due to Beckenbach and Bellman (1967).

Lemma 3.1 If a, b > 0, u < 1 and 1
u

+ 1
v

= 1 then

a
1
u b

1
v ≥ a

u
+ b

v
.

Proposition 3.1 For any 1 < p ≤ 2, fε(Tε(x)) < fε(x) provided that ∇fε(x) �=
0.

Proof Let ϕ(z) = g(z
1
p

1 , . . . , z
1
p

|A|). Since g is, by hypothesis, increasing contin-

uously differentiable function and z
1
p with 1 < p ≤ 2 is concave then ϕ(·) is

quasiconcave.
Consider the function hk : Xp −→ Xp defined by

hk(y)(t) =
∑

a∈A

∂ϕ

∂za

(dε(x)p)ξε,k(x − a)(t)p−2ξε,k(y − a)(t)2.

First, we prove that

hk(T (x))(t) ≤ hk(x)(t), ∀t ∈ I, ∀k = 1, . . . , m. (11)
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In order to do that, we develop the following expression:

hk(T (x))(t) − hk(x)(t) =
∑

a∈A

∂ϕ

∂za

(dε(x)p)ξε,k(x − a)(t)p−2

×
(
ξε,k(T (x) − a)(t)2 − ξε,k(x − a)(t)2

)

=
∑

a∈A

∂ϕ

∂za

(dε(x)p)ξε,k(x − a)(t)p−2

×
(
(Tk(x)(t) − ak(t))

2 − (xk(t) − ak(t))
2
)

=
∑

a∈A

∂ϕ

∂za

(dε(x)p)ξε,k(x − a)(t)p−2

×
(
(Tk(x)(t) − xk(t))

2 + 2(Tk(x)(t)

−xk(t))(xk(t) − ak(t))
)

= (Tk(x)(t) − xk(t))
∑

a∈A

∂ϕ

∂za

(dε(x)p)ξε,k(x − a)(t)p−2

×
(
(Tk(x)(t) − xk(t))

+2(xk(t) − ak(t))
)
. (12)

Since ϕ(z1, . . . , z|A|) = g(z
1
p

1 , . . . , z
1
p

|A|) we have that

∂ϕ

∂za

(z) = 1

p

∂g

∂za

(z)z
1
p
−1

a

and by the definition of Tk(x) we also have that

∑
a∈A

∂g

∂za

(dε(x))||ξε(x − a)||1−p
p ξε,k(x − a)(t)p−2ak(t)

= Tk(x)(t)
∑

a∈A

∂g

∂za

(dε(x))||ξε(x − a)||1−p
p ξε,k(x − a)(t)p−2.

Therefore,

(12) = − 1

p
(Tk(x)(t) − xk(t))

2
∑

a∈A

∂g

∂za

(dε(x))||ξε(x − a)||1−p
p ξε,k(x − a)(t)p−2

= − 1

p
∇kfε(x)(t)2

(∑

a∈A

∂g

∂za

(dε(x))||ξε(x − a)||1−p
p ξε,k(x − a)(t)p−2

)−1

≤ 0.

Thus, we have proved the inequality (11). Now, we define the function Sk : Xp −→
Xp given by

Sk(y) =
∑

a∈A

∂ϕ

∂za

(dε(x)p)ξε,k(y − a)p.
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Notice that hk(y) and Sk(y) coincide at y = x. Moreover by Lemma 3.1, with
a(t) = ξε,k(T (x) − a)(t)p, b(t) = ξε,k(x − a)(t)p and 1

v
= 2

p
we obtain that

hk(T (x))(t) ≥ 2

p
Sk(Tk(x))(t) +

(
1 − 2

p

)
Sk(x)(t) ∀t ∈ I.

Hence, using inequality (11) and Sk(x) = hk(x) it follows that Sk(T (x))(t) ≤
Sk(x)(t) for any k = 1, . . . , m, with at least one strict inequality since ∇fε(x) �= 0.
Therefore, we have that

m∑

k=1

Sk(T (x))(t) <

m∑

k=1

Sk(x)(t).

and
∑

a∈A

∂ϕ

∂za

(dε(x)p)(||ξε(T (x) − a)||pp − ||ξε(x − a)||pp) < 0.

Finally, since ϕ is quasiconcave we can use Theorem 3.5.4. in Bazaraa and Shetty
(1979) to obtain that

ϕ(dε(T (x)p) ≤ ϕ(dε(x)p),

and hence

fε(T (x)) ≤ fε(x). ��
The second property ensures that under mild hypotheses the whole sequence

generated by the algorithm is included in the Sobolev space W 1,p(I, R
m), (see

Definition 5.1 in the Appendix for a description of this space).
It is worth noting that xo ∈ W 1,p(I, R

m) is not an actual restriction. In most
cases, the data observed in continuous time experiments are differentiable func-
tions in any bounded interval, (smooth trajectories), this implies that xo belongs to
the Sobolev space.

Lemma 3.2 If every demand function a ∈ A belongs to W 1,p(I, R
m) and xo also

belongs to W 1,p(I, R
m) then the sequence generated by Algorithm (10) is included

in W 1,p(I, R
m).

Proof The algorithm is defined as

Tk(x)(t) =
∑

a∈A

φa,x(t)a(t)

where

φa,x(t) =
∂g

∂za
(dε(x))||ξε(x − a)||1−pξε(x − a)(t)p−2

∑
b∈A

∂g

∂zb
(dε(x))||ξε(x − b)||1−pξε(x − b)(t)p−2

.

Thus, to show that the sequence generated by T is included in W 1,p(I, R
m),

it suffices to prove that T (x) ∈ Xp and its derivative belongs to Xp for any x in
W 1,p(I, R

m).
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Since 0 ≤ φa,x(t) ≤ 1 for all t then T (x) is bounded by the function
∑

a∈A |a|,
which belongs to Xp. Hence, T (x) ∈ Xp ∀x ∈ W 1,p(I, R

m).
To prove that the derivative of T(x) with respect to t belongs to Xp, we have

that

T ′(x)(t) =
∑

a∈A

φ′
a,x(t)a(t) +

∑

a∈A

φa,x(t)a
′(t)

Since 0 ≤ φa,x(t) ≤ 1 and a ∈ W 1,p(I, R
m) we have that

∑
a∈A φa,x(t)a

′(t) ∈ Xp.
In order to prove that

∑
a∈A φ′

a,x(t)a(t) ∈ Xp we compute φ′
a,x , before that, we

introduce the following functions to simplify the notation.

ha,x(t) = (ξε(x − a)(t))p−2

Da,x = ∂g

∂za

(dε(x)||ξε,x(x − a))||1−p
p

rx(t) =
(∑

a∈A

Da,xha,x(t)
)2

Thus, we can write down φ′
a,x(t) in the following way:

φ′
a,x(t) = Da,xh

′
a,x(t)

∑
b∈A Db,xhb,x(t) − Da,xha,x(t)

∑
b∈A Db,xh

′
b,x(t)

rx(t)
.

Computing the derivative of ha,x(t) with respect to t we obtain

h′
a,x(t) = (p − 2)(x(t) − a(t))(x ′(t) − a′(t))(ξε(x − a)(t))p−4

hence, if we denote

qa,x(t) = Da,xha,x(t)
∑

b∈A Db,xhb,x(t)

(
∑

b∈A Db,xhb,x(t))2

we have that

φ′
a,x(t) = (p − 2)qa,x(t)

(
(x(t) − a(t))(x ′(t) − a′(t))ξ−2

ε (x − a)(t) − (x(t)

−b(t))(x ′(t) − b′(t))ξ−2
ε (x − b)(t)

)

Moreover, (1) qa,x(t) ≤ 1 ∀t ∈ I , (2)|(x(t) − a(t))ξ−1
ε (x − a)(t)| ≤ 1 for any

t ∈ I, a ∈ A and (3) ξ−1
ε (x − b)(t) ≤ ε−1 ∀b ∈ A. Therefore, we obtain the

following inequality;

‖φ′
a,x(t)‖p ≤ 2(2 − p)ε−1 max

a∈A
‖x ′ − a′‖p.

Since, x and a belong to W 1,p(I, R
m) that implies (x ′ −a′) belongs to Xp, that

means that ‖x ′ − a′‖p is bounded, therefore we obtain that φ′
a,x ∈ Xp.

Hence, φa,x ∈ W 1,p(I, R
m), and by Lemma 5.1 of the Appendix, one has that

φa,x(t)a(t) ∈ W 1,p(I, R
m) thus

∑
a∈A φa,x(t)a(t) ∈ W 1,p(I, R

m), i.e., T (x) ∈
W 1,p(I, R

m). ��
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4 The convergence of the algorithm

In this section, we study the convergence of the proposed algorithm for the general-
ized dynamic Weber problem. We will prove the global convergence of this scheme
for p ∈ (1, 2]. First of all, it should be noted that, by the proof of Lemma 3.2, the
sequence generated by Algorithm (10), is bounded in W 1,p(I, R

m). Therefore, it
contains a subsequence weakly convergent in W 1,p(I, R

m) (Brezis 1983). How-
ever, this result is not enough and we look for additional conditions which ensure
the strong convergence of the sequence (see the Appendix for further details on the
difference between weak and strong convergence).

Theorem 4.1 If the function g is quasiconvex and increasing, continuously differ-
entiable on R

n
+; A and xo verify the hypothesis of Lemma 3.2 then the sequence

generated by Algorithm (10), for a given ε, strongly converges to an optimal solu-
tion of Problem (4).

Proof The sequence given by the algorithm contains a weakly convergent subse-
quence. By Lemma 3.2 the whole sequence belongs to the Sobolev space
W 1,p(I, R

m) so that by Lemma 5.1 assertion (2) (in theAppendix) it is also strongly
convergent in Xp. Besides, we also know that under these hypotheses Proposition
3.1 ensures that the whole sequence is descent, provided that ∇fε(x

q) �= 0. There-
fore, we can apply Zangwill’s theorem (Bazaraa and Shetty 1979) to obtain that
the considered subsequence strongly converges to a function x∗

ε ∈ Xp verifying
∇fε(x

∗
ε ) = 0. Finally, Theorem 2.2 ensures that x∗

ε is the optimal solution of
Problem (4).

Once, we have proved that there exists a subsequence strongly convergent,
we have to show that the whole sequence is strongly convergent. In order to do
that, notice that the sequence contains a unique accumulation point, x∗

ε . Indeed,
any subsequence is descent, bounded and included in W 1,p(I, R

m), then we apply
again Zangwill’s theorem to any subsequence and it converges to an element of
�fε

. Hence, the whole sequence is convergent, because �fε
is a singleton. ��

Once we have an algorithm which converges to the solution of Problem (4), the
final part of this section is devoted to develop a method to get an optimal solution
of Problem (2).

For any ε > 0 consider the problem

Pε : min
x∈Xp

fε(x).

Let us denote by x∗
εn

the optimal solution of Problem (Pεn
) and consider any

sequence {εn}n∈N which converges to 0.

Lemma 4.1 If the sequence {x∗
εn

}n∈N is bounded in W 1,p(I, R
m) then it contains

a convergent subsequence in the strong topology of Xp.

Proof Since the sequence {x∗
εn

}n∈N is bounded, for all n ≥ 1, hence we can extract
a weakly convergent subsequence from it. Finally, we apply Lemma 5.1 assertion
(2) (see the Appendix) and the result follows. ��
Theorem 4.2 If the sequence {x∗

εn
}n∈N converges strongly tox∗ thenx∗ ∈ arg min f0.
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Proof First of all, since the sequence {εn}n∈N is decreasing {fεn
(x)}n∈N is also a

decreasing sequence for any x ∈ Xp. Thus, applying Theorem 2.46 in Attouch
(1984) we obtain that the sequence {fεn

}n∈N is epi-convergent in the strong topol-
ogy of Xp.

In addition, since {fεn
}n∈N is a decreasing sequence applying Proposition 2.48.

in Attouch (1984) we have that:

lim
n→∞ inf

x∈Xp

fεn
(x) = inf

x∈Xp

lim
n→∞ fεn

(x) = inf
x∈Xp

f0(x). (13)

Then, as Lp(I, R
m) is a first countable space, {fεn

}n∈N is epi-convergent, the se-
quence {x∗

εn
}n∈N contains a convergent subsequence, and using (13), we can apply

Corollary 2.13 in the above mentioned reference to have that x∗ belongs to the set
arg minx∈Xp

f0(x). ��
For practical purposes Theorem 4.2 requires knowledge of an optimal solution

of Problem (4) for each objective function fεn
for all n ∈ N. However, in order to

solve each one of these problems we have to apply again an iterative algorithm.
Therefore, although we can obtain approximate values for each xn ∈ arg min fεn

,
the exact expression may not be computed. This drawback can be avoided using a
diagonal scheme as shown in the next algorithm. Let T k

εn
(x) denote k applications of

Tεn
on x, where Tε was defined in (9). This is to say, T k

εn
(x) = Tεn

(Tεn

k−3· · · Tεn
(x)).

Theorem 4.3 Let {yn}n∈N be a sequence defined by yn := T n
εn

(yn−1) for any n ∈ N

and bounded in W 1,p(I, R
m). Then, any accumulation point of this sequence is an

optimal solution of Problem (2).

Proof By Lemma 4.1 the sequence {x∗
εn

}n∈N contains a subsequence strongly con-
vergent to x∗ with x∗ ∈ arg minf0. Let {x∗

nk
}k∈N be such a sequence. Let us consider

the subsequence {ynk
}k∈N defined by ynk

:= T nk
εnk

(ynk−1). Therefore we have,

‖ynk
− x∗‖p ≤ ‖T nk

εnk
(ynk−1) − x∗

nk
‖p + ‖x∗

nk
− x∗‖p.

Now, for any ε > 0, there exists nk such that by Theorem 4.1, ‖T nk

εnk
(ynk−1)−x∗

nk
‖p <

ε

2
and by Theorem 4.2, ||x∗

nk
− x∗||p < ε

2 . Therefore ||ynk
− x∗||p < ε and the

result is proved. ��
In what follows an example is included illustrating the use ofWeiszfeld dynamic

hyperbolic algorithm. Moreover, it shows that the pointwise application of classical
Weiszfeld’s algorithm does not work with the dynamic Weber problem. This fact
makes our algorithm useful.

Notice that although, the difference between the two solutions seems to be
counterintuitive it can be explained. The expressions (14) and (15) give the formu-
las of the pointwise hyperbolic Weiszfeld algorithm and the dynamic hyperbolic
Weiszfeld algorithm at t :

xq+1(t) =
∑

a∈A

∂g

∂za
(dε(x

q(t)))||ξε(x
q(t) − a(t))||1−p

p ξε(x
q − a)(t)p−2

∑
b∈A

∂g

∂zb
(dε(xq(t)))||ξε(xq(t) − b(t))||1−p

p ξε(xq − b)(t)p−2
a(t)

(14)
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xq+1(t) =
∑

a∈A

∂g

∂za
(dε(x

q))||ξε(x
q − a)||1−p

p ξε(x
q − a)(t)p−2

∑
b∈A

∂g

∂zb
(dε(xq))||ξε(xq − b)||1−p

p ξε(xq − b)(t)p−2
a(t) (15)

The expression (14) does not depend on the norm in Xp of ξε(x
q − a) with a ∈ A,

i.e., ‖ξε(x
q −a)‖p. It depends on the lp-norm in R

m of ξε(x
p −a)(t) for each fixed

t , i.e., ‖ξε(x
q − a)(t)‖p. This is due to the different topological structure induced

by the norm in the space Xp. The comparison between (14) and (15) suggests that
both algorithms may obtain different solution trajectories.

Example 4.1 In order to illustrate the use of the algorithm we present an applica-
tion to generalized regression, according to the description given in (1). Assume
that we observe three phenomena in the interval [0, 1], represented by the three
functions

a1(t) = (1 + sin(t), 2 − t2),

a2(t) = (3 − 2t, 4 + t4),

a3(t) = (−1 + 2t2, −2 − e3t ),

in L2[0, 1]. The goal is to find another function that best fits the three given func-
tions in the sense of the norm of the space L2[0, 1]. For the ease of presentation we
have chosen a weighted sum of the deviations as the measure of fitness function

f0(x) = 0.25‖x − a1‖2 + 0.35‖x − a2‖2 + 0.4‖x − a3‖2.

Obviously, any other function under our hypothesis may have been chosen.
For the implementation of the algorithm we use Mathematica. We take as

starting function x0(t) = (2 + 0.5t, 2 + 0.5t) and a sequence of εn = 0.01
n

.
The iterations of the algorithm are shown in Table 1. In this table we represent
(q, (x

q

1 (t), x
q

2 (t)), f0(x
q

1 , x
q

2 )), i.e., the first column is the iteration number, the
second column shows the expressions of the iterates and the last column is the
objective value at the iteration. The convergence is achieved in few iterations up
to an accuracy of 10−3. The limit function is

(1.00907 − 0.01177t + 0.0027t2 + 0.99276 sin [t], 2.00637

−0.00135et − 0.99276t2 + 0.00589t4).

Our next example also illustrates the use of the algorithm. In addition, it shows
that in order to solve Problem (2), the resolution of the pointwise version of the
problem in each value of the interval I is not enough, because the optimal solution
of (2) could not be attained in this way. This example proves that our approach is
necessary to solve location problems with moving service facilities.

Example 4.2 Let us consider for m = 2 the space X 3
2

= L
3
2 ([0, 5], R

2). In this
space, we consider the demand functions

a1(t) = (0, 0) χ[0,2](t) + (5, 4) χ[2,5](t)
a2(t) = (4, 0) χ[0,2](t) + (1, 2) χ[2,5](t)
a3(t) = (2, 4) χ[0,2](t) + (7, 3) χ[2,5](t),

where χI is the indicator function defined in (3).
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Within this framework we choose the globalising function

f0(x) =
3∑

i=1

ωi ||x − ai || 3
2

with weights ω1 = ω2 = 2

5
, and ω3 = 1

5 .

In order to solve this example we use the algorithm presented in Section 3 with
the sequence εn = 0.01

n
, ∀n ∈ N; and starting function

xo(t) = (2, 0.5) χ[0,2](t) + (4, 3.5) χ[2,5](t).

The algorithm has been implemented in Mathematica and it stops after 25 iterations
with an accuracy of 10−5. Table 2 shows the iterations of the algorithm. The column
It. gives the number of iterations; Functions gives the iterates and Objective the
objective value of the problem for the corresponding iteration.

Note that for this example an optimal solution is

(1.18621, 0.127739) χ[0,2](t) + (4.69555, 3.4069) χ[2,5](t),

and the optimal objective value is 7.29059.
On the other hand, we also solve the problem pointwisely. This is to say, we

solve the problem using the hyperbolic Weiszfeld algorithm applied to every point
in the interval [0, 5]. Since we are considering demand functions with only two

Table 2 Iterations of Weiszfeld dynamic hyperbolic algorithm

It. Functions Objective

1 (1.91775, 0.286981) χ[0,2](t) + (4.21982, 3.32866) χ[2,5](t) 7.36395
2 (1.69092, 0.182902) χ[0,2](t) + (4.42443, 3.23562) χ[2,5](t) 7.31494
3 (1.48868, 0.153807) χ[0,2](t) + (4.55146, 3.2665) χ[2,5](t) 7.299
4 (1.35367, 0.142395) χ[0,2](t) + (4.62273, 3.32386) χ[2,5](t) 7.2931
5 (1.27023, 0.135361) χ[0,2](t) + (4.66099, 3.36491) χ[2,5](t) 7.29121
6 (1.224, 0.131231) χ[0,2](t) + (4.68044, 3.388) χ[2,5](t) 7.29072
7 (1.20135, 0.129153) χ[0,2](t) + (4.68957, 3.39932) χ[2,5](t) 7.29061
8 (1.19159, 0.128246) χ[0,2](t) + (4.69344, 3.4042) χ[2,5])(t) 7.2906
9 (1.1879, 0.127901) χ[0,2](t) + (4.69489, 3.40605) χ[2,5](t) 7.29059
10 (1.18668, 0.127787) χ[0,2](t) + (4.69536, 3.40666) χ[2,5](t) 7.29059
11 (1.18633, 0.127753) χ[0,2](t) + (4.6955, 3.40684) χ[2,5](t) 7.29059
12 (1.18624, 0.127744) χ[0,2](t) + (4.69554, 3.40688) χ[2,5](t) 7.29059
13 (1.18622, 0.127742) χ[0,2](t) + (4.69555, 3.40689) χ[2,5](t) 7.29059
14 (1.18621, 0.127741) χ[0,2](t) + (4.69555, 3.40689) χ[2,5](t) 7.29059
15 (1.18621, 0.127741) χ[0,2](t) + (4.69555, 3.40689) χ[2,5](t) 7.29059
16 (1.18621, 0.12774) χ[0,2](t) + (4.69555, 3.40689) χ[2,5](t) 7.29059
17 (1.18621, 0.12774) χ[0,2](t) + (4.69555, 3.4069) χ[2,5](t) 7.29059
18 (1.18621, 0.12774) χ[0,2](t) + (4.69555, 3.4069) χ[2,5](t) 7.29059
19 (1.18621, 0.12774) χ[0,2](t) + (4.69555, 3.4069) χ[2,5](t) 7.29059
20 (1.18621, 0.12774) χ[0,2](t) + (4.69555, 3.4069) χ[2,5](t) 7.29059
21 (1.18621, 0.12774) χ[0,2](t) + (4.69555, 3.4069) χ[2,5](t) 7.29059
22 (1.18621, 0.12774) χ[0,2](t) + (4.69555, 3.4069) χ[2,5](t) 7.29059
23 (1.18621, 0.127739) χ[0,2](t) + (4.69555, 3.4069) χ[2,5](t) 7.29059
24 (1.18621, 0.127739) χ[0,2](t) + (4.69555, 3.4069) χ[2,5](t) 7.29059
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Table 3 Pointwise iterations of Weiszfeld algorithm for the points in [0, 2]

It. Functions Objective

1 (2., 0.276606) 2.39908
2 (2., 0.158428) 2.39201
3 (2., 0.13055) 2.39163
4 (2., 0.126633) 2.39162
5 (2., 0.126332) 2.39162
6 (2., 0.12632) 2.39162
7 (2., 0.126319) 2.39162
8 (2., 0.126319) 2.39162

different steps, this is equivalent to solve two different classical Weber problems.
The first one having demand points (0, 0), (4, 0) and (2, 4) and the second one
(5, 4), (1, 2) and (7, 3). Using as starting points (2, 0.5) and (4, 3.5) respectively,
Tables 3 and 4 show the iterations of these two problems.

The solutions obtained after the application of this procedure are (2, 0.126319)
for the problem in the interval [0, 2] and (5, 4) for the problem in the interval [2, 5].

Table 4 Pointwise iterations of Weiszfeld algorithm for the points in [2, 5]

It. Functions Objective

1 (4.35746, 3.40509) 2.51804
2 (4.70544, 3.43239) 2.47524
3 (4.85959, 3.56313) 2.46
4 (4.91596, 3.6859) 2.45371
5 (4.94331, 3.77313) 2.45077
6 (4.95962, 3.83259) 2.4493
7 (4.97022, 3.87375) 2.44853
8 (4.97745, 3.90298) 2.44809
9 (4.98258, 3.92428) 2.44783
10 (4.98634, 3.94018) 2.44766
11 (4.98917, 3.95228) 2.44755
12 (4.99133, 3.96165) 2.44748
13 (4.99302, 3.96901) 2.44742
14 (4.99435, 3.97487) 2.44739
15 (4.99542, 3.97957) 2.44736
16 (4.99628, 3.98337) 2.44734
17 (4.99698, 3.98647) 2.44732
18 (4.99754, 3.989) 2.447318
19 (4.99801, 3.99107) 2.4473
20 (4.99839, 3.99278) 2.44729
21 (4.9987, 3.99417) 2.44728
22 (4.99896, 3.99532) 2.44728
23 (4.99917, 3.99626) 2.44728
24 (4.99934, 3.99703) 2.44727
25 (4.99948, 3.99765) 2.44727
26 (4.99959, 3.99815) 2.44727
27 (4.99968, 3.99856) 2.44727
28 (4.99975, 3.99888) 2.44727
29 (4.99981, 3.99914) 2.44726
30 (4.99999, 3.99999) 2.44726



48 J. Puerto, A. M. Rodrı́guez-Chı́a

Therefore, the solution to the problem using this approach is (2, 0.126319)χ[0,2] +
(5, 4)χ[2,5] and the objective value evaluated at this function is 7.61098.

The comparison of this value with 7.29059 (the objective value of the previ-
ously obtained solution) demonstrates that the pointwise application of the classical
hyperbolic algorithm is not a substitute for the application of our algorithm.

5 Final remarks

The dynamic approach to single facility location problems is not new and can
be seen as a natural way to improve the modeling of real world situations where
demand is time dependent as for instance situations with seasonal demand.

In a previous paper, in 1999, we dealt with a dynamic formulation of the Weber
problem on Lp spaces and showed that a modification of the Weiszfeld algorithm
(1937) converges in the strong topology for each p ∈ [1, 2]. In this paper, we
extends the above mentioned problem considering the minimization of a general
increasing function g rather than the sum function. Our main result is the develop-
ment of an algorithm based on a perturbation of a fixed point equation for which
we prove global convergence to the optimal solution of the considered problem.

To get the global convergence for the perturbed algorithm, we impose that the
demand functions and the starting iterate of the algorithm belong to a certain fam-
ily of subspaces of Lp, called Sobolev spaces. However, although this condition
seems to be a restriction most of the cases that can be considered are covered by
this hypothesis. This is because Sobolev spaces are spaces of regular measurable
functions which are the usual ones for representing trajectories. Moreover, this
methodology has another important feature. Since the functions of the perturbed
problems are differentiable, successive iterations of our algorithm can coincide
(totally o partially) with a demand function. Such coincidence had to be avoided to
prove the convergence in the previous models (Brimberg and Love 1993; Puerto
and Rodrı́guez-Chı́a 1999).

Finally, it is very important to remark that the paper also proves that the optimal
dynamic solution is not just the static solution taken over time. Example 4.2 clearly
shows this counterintuitive result. Therefore, the considered dynamic single facil-
ity location problem, is worthwhile because it leads us to new results not being
extensions of the static problem.

Further extensions of the material developed in this paper are possible in several
lines considering different aspect of location analysis. Specifically, multifacility
as well as conditional location problems with moving service facilites are natural
extensions of the results in this paper. These two topics are currently under research
and may be the content of a follow up paper.

Appendix

In this section we introduce some mathematical remarks needed for this paper. We
start defining the so called Sobolev spaces W 1,p which are subspaces of the Lp

spaces of functions.
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Definition 5.1 The Sobolev space W 1,p(I, R
m) is the set

W 1,p(I, R
m) = {x ∈ Xp : ∃g ∈ Xp such that

∫

I

x(t)φ′(t) dt

= −
∫

I

g(t)φ(t) dt ∀φ ∈ C1
c (I, R

m)}

where C1
c (I, R

m) is the space of functions continuously differentiable with compact
support. We denote g = x ′, because if x is differentiable and its derivative belongs
to Xp then the function g is its derivative.

Recall that W 1,p(I, R
m) is a Banach space with the norm defined as

||u||1,p = ||u||p + ||u′||p.

In order to improve the readability of the paper we include without proof sev-
eral properties which hold in these spaces and which are used to prove the strong
convergence results. The proofs of these properties and further details on Sobolev
spaces can be found in the book of Brezis (1983).

Lemma 5.1 The following assertions hold

(1) Let u, v ∈ W 1,p(I, R
m) then uv ∈ W 1,p(I, R

m)
(2) There exists a compact imbedding from W 1,p(I, R

m) into Xp.

The existence of a compact imbedding is a very important fact because it implies
that if a sequence converges in the weak topology of W 1,p(I, R

m) then it also con-
verges in the strong topology of Xp.

Finally, we recall some concepts concerning different modes of convergence
on normed spaces which will be used in the paper. Let Xp be a normed space
equipped with the norm || · || and denote by X∗

p its algebraic dual with the pairing
between x ∈ Xp and z ∈ X∗

p given by

〈z, x〉 =
∫

I

x(t)z(t) dt. (16)

Remark that X∗
p = Xq where 1

p
+ 1

q
= 1 and p > 1.

Definition 5.2 A sequence {xn}n∈N ⊂ X is said to be strongly convergent to x̄ ∈ X
if

lim
n→∞ ||xn − x̄|| = 0.

In the same way, {xn}n∈N is said to be weakly convergent to x̄ ∈ X if for all z ∈ X∗

lim
n→∞〈z, xn − x̄〉 = 0.

It is well-known that the strong convergence always implies the weak one but in
general the converse does not hold.

Another kind of convergence is the so called epi-convergence. The epi-con-
vergence is very important because it states relationships between the conver-
gence of functionals and the convergence of the sequence of their minima. For the
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sake of completeness we recall Definition 1.9 in the book of Attouch (1984). Let
{g ; gv v = 1, . . . } be a collection of extended-values functions. We say that gv

epi-converges to g, if for all x

inf
xv→x

lim inf
v→∞ gv(xv) ≥ g(x)

inf
xv→x

lim sup
v→∞

gv(xv) ≤ g(x)

where the infima are taken with respect to all the sequences converging to x.
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New models for locating a moving service facility 51
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